In a nutshell: The 4th-order Runge-Kutta method

Given the initial-value problem (IVP)

$$y^{(1)}(t) = f(t, y(t))$$
$$y(t_0) = y_0$$

we would like to approximate the solution y(t). This algorithm uses Taylor series and iteration. We are given a step size h > 0 and a maximum number of steps N and we define $t_k = t_0 + hk$. We want to approximate the solution on the interval $[t_0, t_N]$.

Given an approximation at a point t_k where $y(t_k) \approx y_k$, we will find the approximation y_{k+1} which approximates the solution at $t_k + h = t_{k+1}$.

- 1. Let $k \leftarrow 0$.
- 2. If k = N, we are finished: we have approximated $y(t_k)$ for k = 1, ..., N.

3. Let
$$s_0 = f(t_k, y_k)$$

 $s_1 = f(t_k + \frac{1}{2}h, y_k + \frac{1}{2}hs_0),$
 $s_2 = f(t_k + \frac{1}{2}h, y_k + \frac{1}{2}hs_1),$

 $s_3 = f(t_k + h, \quad y_k + hs_2),$

and thus, let $y_{k+1} \leftarrow y_k + h \frac{s_0 + 2s_1 + 2s_2 + s_3}{6}$.

4. Increment *k* and return to Step 2.

Error analysis

For a single step, the 4th-order Runge-Kutta method is $O(h^5)$ assuming that y_k is exact; however, over multiple steps, where we are using an approximation to estimate the next approximation, the error reduces to $O(h^4)$.