In a nutshell: The $4^{\text {th }}$-order Runge-Kutta method

Given the initial-value problem (IVP)

$$
\begin{aligned}
y^{(1)}(t) & =f(t, y(t)) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}
$$

we would like to approximate the solution $y(t)$. This algorithm uses Taylor series and iteration. We are given a step size $h>0$ and a maximum number of steps N and we define $t_{k}=t_{0}+h k$. We want to approximate the solution on the interval $\left[t_{0}, t_{N}\right]$.

Given an approximation at a point t_{k} where $y\left(t_{k}\right) \approx y_{k}$, we will find the approximation y_{k+1} which approximates the solution at $t_{k}+h=t_{k+1}$.

1. Let $k \leftarrow 0$.
2. If $k=N$, we are finished: we have approximated $y\left(t_{k}\right)$ for $k=1, \ldots, N$.
3. Let $s_{0}=f\left(t_{k}, y_{k}\right)$
$s_{1}=f\left(t_{k}+1 / 2 h, y_{k}+1 / 2 h s_{0}\right)$,
$s_{2}=f\left(t_{k}+1 / 2 h, y_{k}+1 / 2 h s_{1}\right)$,
$s_{3}=f\left(t_{k}+h, \quad y_{k}+h s_{2}\right)$,
and thus, let $y_{k+1} \leftarrow y_{k}+h \frac{s_{0}+2 s_{1}+2 s_{2}+s_{3}}{6}$.
4. Increment k and return to Step 2.

Error analysis

For a single step, the $4^{\text {th }}$-order Runge-Kutta method is $\mathrm{O}\left(h^{5}\right)$ assuming that y_{k} is exact; however, over multiple steps, where we are using an approximation to estimate the next approximation, the error reduces to $\mathrm{O}\left(h^{4}\right)$.

